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ABSTRACT .. -

--- The generalized, bivariate, linear location problem

concerns the locating of a linear facility, x2=C0+C1X1 ,

in a two-dimensional Euclidean space such that the p-norm

distance taken to the q power is minimized of serving n

existing fixed facilities whose location in the two-

dimensional Euclidean space is given by (ail,a i2) withil i
i=l,...,n. The solution of the generalized, bivariate,

linear location problem consists of two subproblems. The

first subproblem involves the determination of the point

on any linear facility that minimizes the p-norm distance

to an individual existing facility. The second subproblem

consists of determining the optimal linear facility that

minimizes the sum of the q multiples of the p-norm dis-

tance from all the existing facilities to the point on the

linear facility determined by the previous step.

The lack of convexity of the generalized, bivari-

ate linear location problem prohibits a universal solution

technique for all combinations of possible values for p

and q. For certain combinations of p's and q's, however,

an exact solution can be determined., For example, the

iii



case where the limit is taken as p approaches one from

the negative direction and q equals two reduces to simple

regression of x1 on x2. If the limit is taken as p

approaches one from the positive direction and q equals

two, the generalized, bivariate, linear location problem

becomes simple regression of x2 on x1. In general, most

combination of p's and q's greater than one can only be

solved by a heuristic approximation procedure.
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CHAPTER I

INTRODUCTION

The generalized, bivariate, linear location problem

concerns the placement of a linear facility of the form

x = C + Cl1x such that certain criteria dictated by the

decision maker are minimized. The linear facility to be

located might be considered, for example, from the classi-

cal location-theory perspective to be a pipeline connect-

ing a number of factories, a trunk line within a plant

connecting work stations, or an interstate highway con-

necting various cities. A more generic interpretation of

the linear facility might involve the estimating (or fix-

ing) of a relationship between output of a machine and

power consumed by that machine, sales of a product and

the advertising expenditures on that product, or (even in

the classical sense) the size of the seeds of the daughter

sweet pea plants with respect to the size of the seeds of

the mother sweet pea plants (David, 1978).

The critical aspect of the generalized, bivariate,

linear location problem concerns the criteria selected

by the decision maker to be minimized. If a linear

facility cannot pass exactly through each data point, the
'1
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person performing the location decision must determine

which distance should be minimized. Should the objective

function of the minimization problem consider just the

distance with respect to one of the variables, or should

the distance to be minimized be some composite distance

with respect to both variables? In addition, the decision

maker must determine the relative importance of each of

the existing facilities with respect to the distance being

minimized. For example, should the importance of an exist-

ing facility in the minimization process be linearly pro-

portional to the distance to the linear facility, or

should outliers have more or less importance?

Early contributors to point-location literature

favored the Euclidean norm of modeling distances in the

minimization process. Later, the rectangular norm was

used for approximating distances when movement was

restricted to a network which was basically a rectangular

grid (Morris, 1981). Both norms are special cases of the

p-norm distance function,

N 1/
I(x) = [ Z Ixt - aitiP]I /  p > 1,

t=l

where x and ai are points in N-dimensional space. Love

and Morris (1972), considering the point-location problem,

found that p-norm distances raised to the power of p = 1.69

V, 4-
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and 1.78 were better models for interstate road distances

than were the classical rectilinear, p = 1, and Euclidean,

p = 2, distances. Cooper (1968), also working with the

point-location model, observed that the weighting of vari-

ous data points, regardless of the p-norm distance used,

should not be necessarily directly proportional to the

distance from the point to the linear facility. Depending

upon the situation, the p-norm distance taken to powers

other than one may more accurately model the situation in

terms of costs. Considering the location (or estimation)

of linear models, the least squares procedure used in

regression minimizes the sum of the squared vertical

distances between the data points and the equation

x2 = CO  (Neter & Wasserman, 1974); and the least

sum procedure minimizes the sum of the absolute values of

the same distances.

The generalized, bivariate, linear location problem

allows the decision makers first to select the p-norm

distance taken to any power q that will best satisfy the

needs of their analysis. The linear facility can then be

located using the data with respect to the predetermined

values of p and q.

Statement of the Problem

The generalized, bivariate, linear location problem

can be stated in the following manner: Given n existing

a. 4



4

fixed facilities i whose locations in a two-dimensional

Euclidean space are given by (a1l, ai2) with i = 1, ... ,n;

locate a linear facility, x2 = CO + ClXI , in the two-

dimensional Euclidean space such that the total cost of

serving the n fixed facilities i is minimized. Assume

that cost is proportional to distance so that the cost of

serving facility i is equal to W i  where W. is a weight-
£q.

ing constant which transforms distance into cost and ppi

is the p-norm distance taken to the q power from facility

i to the linear facility which is to be located.

More specifically, locating a linear facility con-

sists of two subproblems: (1) determine the point

(xill xi2) on the linear facility closest to the existing

facility i, and (2) determine estimates for the linear

parameters, C0 and CI.

Formally, the modified distance function, (Co, C1 ),

is given by

2 /
pq (CO , C1 ) = Z ? Iai - xit PqPpiw~~1 ~ t=lit t

subject to

C0 + C1 xii x=i2'

p > 1, and

q>0

• .4 t,
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where xit is the tth coordinate of a point (xil, xi2) on

the linear facility, x2 = C0 + C1xI , that minimizes the

p-norm distance raised to the q power from the ith exist-

ing facility to the linear facility to be located. The

preceding definition is similar to the work of Morris

(1981) with the addition of the linear constraint.

Using the preceding definition, the formal statement

for the linear Weber problem would be

n
Minimize C2£ (Co , CI) Z W.Zq.(C , Cp 1 i Pi 0 1

where

C0, C1 are the intercept and slope parameters

of the linear facility to be determined,

W. is the weighting constant which transforms

distance into costs, and

CI ) is the minimum p-norm distance frompi o 1

the point (a11, ai2) to the point

(Xil xi2 ) on the line, x2 = CO + Cl1 I ,

taken to the power q.

Review of Related Literature

The subject of generalized, bivariate, linear location

is a child with many fathers. If the problem of locating

a "linear" facility is considered an extension of the

point location area, then the roots of the linear location
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problem may be traced to Fermat in the early 17th century

(Wesolowsky, 1973). If the linear location problem is

considered a generalization of the least square estimation

procedure, then the heritage of the linear location problem

lies in the earliest works of least square estimation done

by Gauss in the late 18th century (Eisenhart, 1978). To

develop a proper perspective regarding the linear loca-

tion problem, therefore, consideration must be given to

both location theory and least sum regression theory.

Location Theory

Fermat first stated the point location problem in

the following manner: "Given three points in the plane,

find a fourth point such that the sum of its distances to

the three given points is a minimum" (Wesolowsky, 1973,

p. 96). Torricelli found the point that minimized the

sum of its distances to the points on a triangle to be

"at the intersection of the circles which circumscribe the

equilateral triangles constructed on the sidez of and out-

side the triangle formed by the three given points"

(Verdini, 1976, p. 1). From the work of Cavalieri,

Simpson, and Heinen, Jacob Steiner posed and solved the

Steiner problem.

If all angles of the triangle formed by the given
points are less than 1200, then the minimizing point
is found at the point where three lines, one from
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each given point, intersect at 1200. If one of the
angles of the given triangle is greater than or equal
to 1200, the vertex of this angle is the minimizing
point. (Verdini, 1976, p. 1)

The distances referred to in these solutions were all

Euclidean distances raised to the first power (p = 2,

q = 1), and the points were all of equal weight. Simpson,

in 1750, was the first to generalize Fermat's problem by

investigating the sum of weighted distances (Wesolowsky,

1973).

In 1909 Alfred Weber published his pioneering work

in special economics, Uber den Standort der Industrien.

He posed the problem of placing a factory that produced

one output manufactured using two raw inputs from separate

localized areas and subsequently sold at one distant

market. Weber assigned the three elements i (i.e., one

product and two raw inputs) weights u. depending upon the1

weight of the element divided by the weight of the product.

With this system the weight of the product was defined as

one. Weber further defined the transportation rates for

each product as ri. Thus, "Weber termed 'ideal weights,'

or weights of elements adjusted for differential transpor-

tation rates" (Kuhn & Kuenne, 1962, p. 22) to be

W i=uiri .

W. u~r.
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The total transportation cost, C p(Xl, x 2 to be minimized

is the following:

n
CL 2 (xi, x 2 ) = W iZ2i

i=l

where P2i is the Euclidean distance from each facility

that supplies the raw inputs or receives the final product

(ail, ai2) to the plant to be located (xI, x 2 ). The

Euclidean distance t2i is mathematically defined as

S2i = [(x 1 - ail) 2 + (x 2 = ai 2 ) 2 ]1 1/ 2 (Kuhn & Kuenne,

1962).

The earliest solutions to the Weberian problem were

either geometrical or physical in nature. Such models as

the weighted triangle (Dean, 1938), Launhart's pole

principle (1885), isodapones (Palander, 1935), and the

Varignon's frame (Isard, 1956) provided exact solutions,

although they were quite cumbersome and limited in the size

of problem that they could solve (Kuhn & Kuenne, 1962).

Weiszfeld was the first to discover an iterative

technique to solve the original Weberian problem. The

technique of iteratively solving two simultaneous equa-

tions, first published in 1937, was subsequently redis-

covered in the fifties and sixties by various authors

(Cooper, 1963; Kuhn & Kuenne, 1962; Michle, 1958). To

minimize the cost function, the first derivatives are taken

• it
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with respect to x1 and x2 , and the results are set equal

to zero. This process yields

;Ct 2 (X) n Wi(x1 - ail
= Z =0,ax1  i=l 2i l' x 2)

aC£ 2(X) n Wi(x 2 - ail)
= Z(x =0.

ax2  i=l 2i( 1  '2)

Rearranging terms produces the following equations:

n W.ail

nil Xi ,~l x2 )i=l 2i l' x2 )
X1 n W.

i=l £2 i(xi x2 )

n W ja.

i=1 P,2il(XI ' x2)

2 n W.
i=l L2i(xi ' x 2)

An iterative procedure is required since xI = f(xI, x2)

and x2 = f(xI, x2). The weighted mean, the center of

gravity, was a convenient starting point for the iteration.

The preceding function was found to be convex since it was

the sum of convex functions, and the itcrative procedure

was assumed to converge on the global minimum if no itera-

tion resulted in xI and x2 being equal to the coordinates

of one of the existing facilities.

* ~ ~ ~ - -



10

Cooper (1968) generalized the Weber 
problem to mini-

mize the Euclidean distance raised to a power q where q

was greater than zero. Love and Morris (1972) extended

the Weber problem to include p-norm distances, but Morris

(1981) combined these two formulations into the generalized

Weber problem which can be stated in the following manner

for Euclidean two space:

n
Minimize Ctq(x1 , x2  = n w.q (x1 x21

p 2 i=l i 2

where
2

i (Xl•- x 2 )  E [ Xit - ait
t=l

Inspired by the work of Love and Morris (1972), Wesolowsky

and Love (1972), Eyster, White, and Wierwille (1973),

and Love (1969), Verdini (1976) developed and proved con-

vergence of a generalized hyperbolic approximating func-

tion that eliminated the difficulties in differentiating

the generalized Weber problem for q = 1 and p = 1 or 2.

The approximating function, Lq (x took the follow-
pi 1' x21  oothflow

ing form:

Lq ' x2) 2 a 2 + C]p/2}q/p

Pit~ l'X) Z it it~t=1

Li
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where e was a strictly positive smoothing constant.

Morris and Verdini (1979) extended the application of the

hyperbolic approximating function by proving convergence

and convexity for q = 1 and p > 1, and Morris (1981)

further generalized the convexity and convergence proofs

for q > 1 and p > 0. As Love and Morris (1978) proved for

p = 2 and Morris (1981) proved for p > 0, however, the

Weber problem is not convex or concave for q < 1. Local

minima exist at each existing facility.

Location theory was extended from the point perspec-

tive to the linear perspective by MacKinnon and Barber

(1972) when they developed an algorithm that positioned

a linear facility that minimized the Euclidean distance

(p = 2, q = 1). They used a heuristic method to search

for the optimal slope of the linear facility between

bounds of the slope of the regression lines of x2 on x 1

and x1 on x2.*

Wesolowsky (1975) determined an exact, although not

necessarily an unique, solution to the linear location

problem for Euclidean distance (p = 2, q = 1) by rotating

the original coordinate axes until the optimal slope of

the linear facility was parallel to the transformed axes.

The points (xil xi2) where i = 1, ... , n were transformed

into polar coordinates (x ilP xi28 ) in the following

manner:

.. ... . L °
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Xi2 8 = Xi2 COS e + x sin e,

Xile = i2 sin e + xil cos 6.

Thus, with the knowledge that the line that minimizes the

p = 2, q = 1 distance is the median line (Rice & White,

1964), Wesolowsky found the value of 8 for the line

xi 2 8 = Z8 in the transformed axes that minimized the

following equation:

1 n

C91 (6)= n W2 i=l ie XileI*

Once the value of 8 was found, C1 was equal to tan e; and

C0 was the median of xi2 e .

Morris and Norback (1980) simplified Wesolowsky's

procedure by recognizing that the linear facility for q = 1

was the median line and that at least one solution would

pass through at least two existing facilities i. Morris

and Norback also extended the applicability of their

procedure to 0 < q < 1 distances. The authors pointed

out, however, that the convexity condition for q - 1 was

not present for 1 < q < -, and that an alternate heuristic

technique must be used for solving problems with values of

q>1.

I..
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Least Sum Regression Theory

The least square estimation procedure, which is the

basis for most linear regression applications, was first

published by Gauss in 1794. His treatment of the location

of a function in the form y = a + aX which minimized the

squared error from a set of points n where n > 2 was

inspired by John Neinrick Lambert's approach to the same

problem by using a moving average (Eisenhart, 1978).

Francis Galton indirectly coined the term "regression"

in his 1885 publication, Natural Inheritance, when he

studied sweet pea plants. Galton noticed that the size

of the seeds of daughter plants seemed to be related to

the size of the seeds of the mother plant, but that they

also appeared to "revert" to the mean. The term "revert"

was soon replaced by "regress" (David, 1978).

A relatively short time after Gauss, in the 1820s

Fourier first proposed a method of minimizing the sum of

absolute deviations instead of minimizing the sum of the

squared deviations as used in regression. Fourier recom-

mended an iterative technique that he developed which was

similar to the simplex method (Fisher, 1961). Later in

the century, Edgeworth, receiving inspiration from the

works of Laplace, recognized that the least squares pro-

cedure was highly susceptible to outliers and was, there-

fore, inferior to least sum estimators (Barrodale, 1968).
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This observation was later supported by the studies of

Barrodale (1968) and Forsythe (1972). The algorithm pro-

posed by Edgeworth (Rhodes, 1930), as well as more recent

algorithms developed by Rhodes (1930), Singleton (1940),

and Karst (1958), were either limited to two dimensions

or became unwielding as the number of dimensions increased

(Fisher, 1961).

Each of the preceding authors recognized that mini-

mizing the sum of the absolute deviations did not neces-

sarily produce a unique solution. Rice and White (1964)

pointed out that the y-intercept (C ) was the median of

a2 - Ca and, therefore, the best least sum estimator

would be the median line. Sposito and Smith t1976),

expanding on the work of Appa and Smith (1973), provided

the following conditions for the location of a hyperplane

of R dimensions from n observations which minimized the

sum of absolute deviations:

1. At least one hyperplane giving the minimum sum

of absolute deviations passes through R of the n points.

2. Under the assumption that no set of R = 1 Observa-

tions lies on one hyperplane in R dimensions, if one

denotes n1 as the number of points above a certain hyper-

plane and n2 as the number of points below this hyperplane,

then the hyperplane cannot minimize the sum of absolute

deviations unless In1 - n2 1 < R.
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3. If the number of observations, n, is odd, then

any hyperplane that minimizes the sum of absolute devia-

tions passes through at least one observation point.

4. For a given set of observations, if multiple

hyperplanes exist that minimize the sum of absolute devi-

ations, then any convex combination of these optimal hyper-

planes is also optimal.

Charnes, Cooper, and Ferguson (1955) demonstrated the

applicability of simplex as a means of minimizing the sum

of absolute deviations. In their procedure they developed

a linear programming problem that consisted of n con-

straints where n was equal to the number of data points

and that contained an objective function that minimized

the sum of the non-negative deviations for each constraint.

Wagner (1959) modified the Charnes et al. formulation by

reducing the number of non-negative deviations to two

variables to solve the Chebyshev criterion: Minimize the

maximum deviation. Various linear programming formula-

tions of each minimization criterion have been addressed

by many authors. Among these are Barrodale and Roberts

(1973), Barrodale and Young (1966), Glahe and Hunt (1970),

Fisher (1961), Sielken and Hartley (1973), and Narula and

Wellington (1977). Forsythe (1972) extended the minimum

sum concept to minimize the sum of the deviations taken

• if r.
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to powers between zero and infinity by the use of gradient

search techniques.

The preceding statistically oriented models (i.e.,

least square and least sum regression) were designed to

minimize the vertical distance between the observation

points and the linear equation to be estimated. Using the

linear location theory notation, the assumption in these

models was that the minimum distance between the existing

facility i located at a ill ai2 and the linear facility,

x2 = CO + Cl1I , was always equal to ai2 - C - Clail"

An exception to this concept exists in the field of sta-

tistical estimation. With the technique of principal com-

ponents, the Euclidean distance raised to the second power

(p = 2, q = 2) is minimized by finding a linear composite

of the original variables such that the sum of the squared

perpendicular distances from the observations to the

linear composite are minimized (Green, 1978).

Summary

In summary, many solution techniques are available

to solve individual cases of the generalized, bivariate,

linear location problem.

For regression, which minimizes the vertical dis-

tances, the least squares procedure is used to minimize

these distances raised to the second power; linear
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,i
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programming formulations are used to minimize these dis-

tances raised to the first power and raised to infinity;

and gradient search procedures are used for these dis-

tances raised to any powers between zero and infinity.

For minimizing the Euclidean distance (p = 2), Wesolowsky's

procedure minimizes p = 2 distances raised to the first

power; Morris and Norback's modification of Wesolowsky's

procedure, in addition to being used to minimize the

absolute distances, can be used for p = 2 distances raised

to powers between 0 and 1; and the principal components

method minimizes the square of p = 2 distances.

Organizational Plan of the Study

An analysis of the generalized, bivariate, linear

location problem is presented in this study.

Two methods for deriving the point (xil, xi2) on the

linear facility that minimizes the p-norm distance taken

to the q power to the existing facility are discussed

in Chapter II. In addition, solution properties and a

physical interpretation of the p-norm distance within the

generalized, bivariate, linear location problem are pre-

sented.

Contained in Chapter III is a presentation of the

formulation of the modified distance function, q. (C ,Cpi 0 1
A modification of the hyperbolic approximation technique
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of Morris and Verdini (1979) is used to investigate the

convexity properties of kq.(C , C1 ). Also, the Weber
pi 0

formulation of the generalized, bivariate, linear location

problem based on the modified hyperbolic approximation

function along with its convexity properties are discussed.

Analytical solutions of the Weber formulation of the

generalized, bivariate, linear location problem for cer-

tain values of p and q are presented in Chapter IV. Also,

in Chapter IV a heuristic solution for the generalized,

bivariate, linear location problem for values of p and q

not analytically solvable is presented.

Included in Chapter V are a summary and reconnenda-

tions for further research. Following Chapter V is the

bibliography which concludes this study.

L-
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CHAPTER II

WEBER REFORMULATION: POINT DETERMINATION

Consideration must be given to procedures for

restating the Weber formulation of the generalized, bivari-

ate, linear location problem as presented in Chapter I in

a format that can be used to identify the unknowns, C0 and

C1, of the linear location facility, x2 = C0 + C1x1.

Locating a linear facility is a two-step process:

(1) determine the point (xil, xi2) on the linear facility

"closest" to the existing facility i, and (2) determine

estimates for the linear parameters CO and C1 . In this

chapter step 1 is discussed. Specifically, the point

given by the coordinates (xil, xi2) that minimizes the

modified p-norm distance from the existing facility to

the linear facility is determined.

As presented in Chapter I, the modified distance

function, Zi(Co C ), is as follows:
pi 1

2 plq/p
Minirize iq (C0, C1) = [ Z lait - xitl (2.1)

t=l

subject to

c° + Cli x xi'l
Co 1 il i2 '
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p > 1, and

q > 0.

As stated, the modified distance function, q. (Co, C

contains four unknowns. The obvious unknowns, C0 and C1 ,

are the parameters needed to place the linear facility.

C0 and C1 cannot be found, however, until xil and xi2,

the points on the linear facility that minimize the

p-norm distance taken to the q power from the linear

facility to the existing facility i, are determined.

Xil and xi2 cannot be determined, however, until C0 and

C1 are found.

In regression, which minimizes the sum of the squared

vertical distances, the values of xil and xi2 can be

stated as functions of C0 , CI, ail, and ai2 as follows:

Xil = ail,

xi2  CO 1+ Clail

For the Euclidean (p = 2) distances the values of xil and

xi2 which minimize the modified distance function corres-

pond to the perpendicular distances from the linear facil-

ity to the existing facility i. In general, however, the

values of xil and xi2 that minimize the p-norm distance

taken to the q power are not on the vertical or the per-

pendicular and must be analytically determined.

,!
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The first step in solving the preceding circular con-

dition is to determine a general expression for xil and

xi2 as a function of C0 , C1, ail, and ai2 for any p-norm

distance taken to the q power. At this stage of the

analysis C0 and C1 are considered given, and the variables

to be optimized are the coordinates xil and xi2. In other

words, given a line, x2 = C0 + C1x1 , (where C0 and C1 are

known) and a point (a. ai2), the coordinates xil and

xi2 on the line that minimize the p-norm distance taken

to the q power must be found. Mathematically stated, the

problem is to solve the following equation:

2

Minimize ,q. (x = i - xit_7 q /  (2.2)pl t= 1

subject to

CO + C1Xi M x12'

p > 1, and

q > 0.

Lagrangian Formulation

One method of finding the point (xil, xi2 on the

linear facility, x2 = CO + C lxi, is to solve the following

Lagrangian formulation:
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L(X, X) = Iq (x x
pi ill i2

+ X(x i2 - C xil - C0 ). (2.3)

Taking the partial derivatives with respect to xil, xi2,

and X, the following equations result:

9L(X, X)illP-1(qi)l-p/q(
ax=lqla il xp

sgn(ail - x ) C I  (2.4)

3L(X, X) ql - p - I q )1-p/q8xi2 a~i2 xi2l (p

* sgn(ai2 - xi2) + A, (2.5)

aL(X, X) - CO (2.6)ax =i2 1 Clil 0

where sgn is the signum function with the following

properties:

if D > K, then sgn(D - K) = 1,

if D = K, then sgn(D - K) = 0, and

if D < K, then sgn(D - K) = -1.

Equations (2.4), (2.5), and (2.6) must each be set equal

to zero and solved simultaneously.

Property 2.1

If al xil and ai2 = xi 2 , then the first-order

partial derivatives of L(X, A) are undefined for p > q.

I
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Proof. Let ai =il and ai2 = xi2 . Then the first-

order partial derivatives of L(X, A) with respect to xit

(there t = 1 or 2) are as follows:

For p = q:

aL(X, X = q -01 [(0)P + (0)Pjl-1  sgn(O)(-l).

it

For p > q:

aL(X, X) = qOjP-l -sgn(0)
axit [(0) p + (0)P]p

- q /p

= q10 P- I sgn(0) (1/0) (-1)

Since [010 and 1/0 are undefined, aL(X, a)/x it is

undefined. The first-order partial derivatives of L(X, A)

are undefined for p > q.

Property 2.2

If ait = xit for t = 1 or 2, then the first-order

partial derivative of L(X, A) with respect to xit is

undefined for -1 < p < 1.

Proof. Let ai =x for t = 1, 2. Then the first-

order partial derivatives of L(X, X) with respect to xit

are:

For p = 1:
L~, it )__qIl 2 i.,qi) 1-/q

aL(,X) sgn(O)(-1) = 1010.

J*-
. . . . . .. . . . .. .... . " .. .. ...- .. . . .. 4
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For -1 < 
p < :

L(X, ) -q( )l/ sgn(0)

axit 1 1l-p) 101 (l-p)

Again, since 101 and 1/0 are undefined, 3L(X, X)/ax is

undefined for -1 < p < 1.

Property 2.3

If ail = Xil and ai2 = xi2, then the rth-order par-

tial derivatives of L(X, A) are undefined for p a q/r and

-r < p < r.

Proof. Using the same arguments as those used in

Property 2.2, the values for the rth-order partial deriva-

tives of L(X, X) for the ranges of p stated previously

are equal to 00 or 1/0 and, therefore, are undefined.

Alternate Formulation

The computational problems associated with the signum

function and the undefined nature of the Lagrangian func-

tion, L(X, X), require that an alternate formulation of

the problem be used to determine the point (xil, xi2) on

the linear facility, x2 = C0 + C1xI, closest to the exist-

ing facility i.

Again, recognizing that locating a linear facility

is actually a two-step process (i.e., the first to deter-

mine the point (xil, xi 2 ) on the linear facility closest

ill i2

" tit
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to the existing facility i, and the second to determine

estimates for the linear parameters C0 and C1 ), the problem

is divided into two sections. Step 1 (i.e., finding the

point (xil, xi2) as a function of C , C , all and ai2

on any linear facility, x2 = C + closest to the

existing facility i located at (a. ai2 ) is determined

here.

Since the purpose is to determine the point

(Xil, xi2) on a given linear facility, the values of CO

and C1 can be assumed to be known at this stage of the

analysis. In theory, however, the process of determining

xil and x1 2 would be repeated an infinite number of times

for each possible combination of values for C and CI .

Since C and C are assumed known at this stage of

the analysis, whether an existing facility i lies on the

given linear facility is known. If this is the case, then

Xil = ail and xi2 = C0 - Cai = ai2 and the modified

distance function kq. equals zero. For an existing facil-
pi

ity i not on a given linear facility, the Lagrangian

formulation for the modified distance function as a func-

tion of xil and xi2 is similar to Equation (2.3):

L(X, 2) (X2il + (x - C0 ). (2.7)

For points on the linear facility, L(X, X) = 0.
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Substituting Equation (2.2) for q (xil, xi2 ), the

Lagrangian formulation becomes:

L(X, X) = [(ail - xillP + jai 2 - xi2lP] q / p

+ X(xi2 - ClXil - C ). (2.8)

The computational problems associated with the

absolute value function within the modified distance func-

tion are easily eliminated by squaring and taking the

square root of the expressions within the absolute value

functions. After performing this operation and setting

the resulting relationships into a Lagrangian formulation,

the following formula results:

Minimize L(X, X) = {[(ail - x i) p 2

+ [(ai 2 - x i2)]P/2q/p

+ X (xi2 - C1Xil - C0) (2.9)

Taking the partial derivatives with respect to each

variable, the following equations result:

aL(X, X) 2]p/[2~1ax il = q{[(a il _ X il)2]/

+ [(a i 2 _ xi2) 2]1p/2 } (q/p)-l

[ [(ail - 2il)2 (p/2)-l

• (a - Xi) -i CI, (2.10)

il i-

,i4
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L(X, X) q{[(a _x ) 2 p/ 2

axi 2  i ii
23]p/2} (q/p) -1

+ [(ai 2 - xi2)

, [(a i2 _ x i2) 2] (p/2)- i

* (ai 2 - xi 2 1 + X, (2.11)

DL X = x 2  - C xil - CO. (2.12)

Most of the problems associated with the original

Lagrangian formulation have been eliminated. The first-

order partial derivatives with respect to x il and xi2 now

can be computed since the signum function has been

eliminated, and the first-order partial derivatives are

defined for all values of p and q as long as all # xil

and ai2 # xi2. This nonequality condition for both vari-

ables has been eliminated. One problem, however, still

remains. If just one ait = it (i.e., either ail = Xil

or ai 2 = xi2), then DL(X, X)/3xit is undefined for p < 2.

Ignoring this property for the moment and recognizing

that the following derivation may not be valid for p < 2,

the values of xil and xi2 can be solved by setting Equa-

tions (2.10), (2.11), and (2.12) equal to zero and solving

simultaneously. Performing these steps and eliminating

xi2' the following equation results:

.5,S
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(ail _ xii )[(ai -x 2il) (p/2)-i

= -C 1 (ai 2 - C0 - Clxil)

* [(ai2 - Cl1 x - C )2](p/2 )-I  (2.13)

Squaring both sides of the equation to ensure that C1 is

positive and taking the (p-l)th root, the following formula

is obtained:

(ai - X)2 = [C 21 /(p-l)
ii - 1

2
* (ai2 - C - CIxil) 2 (2.14)

Expanding and collecting terms and then using the quad-

ratic formula, the following values of xil are obtained:

ai + [(C 2 )1 / 2 ]1 1/ (p - ) [ai 2 - Co]x i1 -[C1 2]p / (p - l ) }

1-1* {i - I] [(c1
2 )i/2 ]i/(p-i)}, (2.15a) '

ail - [(C 1
2 ) 1/2] 1/(p-i) [a -

I- C 1
p / (p - l )

* {1 + [CI(Cl2 )1/2]1/(p-l)}. (2.15b)

Substituting the values of xil into Equation (2.12), the

following values for x are obtained:

i
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Co0 + C1 ail -[C12]p/(p-l)ai2
i2= C C11 - 2P/(P- )

+ [C 1 ][(C1
2 )/ 2 ]"1 / ( p - ' ) [ai 2 - C0 - C1a ill

1- [C1 2P/(P-I) (2.16a)

C~~ ~ 0+CIai cc2 P(P l)a i 2
C + C1 -2p/(p-l)

1-[c

+ (C] [(CI 2) 1/2] 1/(p-i) ai2 - 0

1 - [C 1 2p/(p- I ) (2.16b)

The pair of solutions for xi and x results from

the squaring of C1 in the solution procedure. This tech-

nique is necessary since the slope (C )may be negative and

the (p-l)th root may be noninteger. Resolving the con-

flict of two solutions for x and x is accomplished

by substituting each pair of values into Equation (2.13).

Performing this action for the first values of x and

x12, the following equation results:

- C 21 (2.17)-[(C1 2)
I /2] = -C1 . (.7

The term on the left side of the equal sign is always less

than or equal to zero, and the only way for the equation

to be equal is for C1 > 0. Thus, the first values of xil

and x. are valid solutions if and only if C1 > 0.

12t
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Likewise, performing the same action with the second

values of xi and xi2, the following equation results:

((C12)I/2] = _C (2.18)

In this case the term on the left side of the equation

sign is always greater than or equal to zero. Thus, C1

must be less than or equal to zero, and the second values

of xil and xi2 are valid solutions if and only if c < 0.

Solution Properties of xil and xi2

The following properties and associated proofs sub-

stantiate the assertion that the point (x il xi2) mini-

mizes the modified p-norm distance from the existing

facility i to the linear facility.

Property 2.4

For values of p > 1 and q > 0 the point (xil, xi2 )

minimizes the p-norm distance taken to the q power from

the existing facility i to the linear facility,

X2 = CO + C1X.

Proof. Substituting C + C1Xi for X in Equation

(2.9) and remembering that Xi2 - C1Xil - Co = 0, the

following equation results:

2]p/2p/qpL(Xil {[(ai - 21p/2

+ [(ai 2 - C0 - ClXil)2]p/2 q /p .  (2.19

i-l•'
!p
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Taking the total derivatives with respect to xi1, the

following result is obtained:

dL (x 1 ). = -q{[C(a - x 2 p/
dxilil il

+ ((ai2 - C0 - C1xi)2p/1q )-

Mail~ - x i1 ) 
2 1(P/2 )-l(ai - x i1 )

-C--a---C -----]~~2

*(ai - Co - C 1x)}. (2.20)

Notice that the portion of Equation (2.20) underlined

would be equivalent to Equation (2.13) if the first

derivative were set equal to zero. Taking the second

derivative of L(x 11 ) with respect to x11 produces the

following result:

d L(x i)= q{[(a. - 21/

dil 2 11 il

+ [ai2 Co l xil) ,/1qp

*[(q - p){[(a 1 - x .) 1 )]/2l(a - x 1 1 )

+ C [(a 1 - C0 -

*(a~ 1 -C ~~1

--il- C 0 C 1 ilH
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+ (p - 1){[(a il - X il /

+ [(ai2 - C - CX il) 2 ]p/ 2 }

2] (pp2))2] Ma2)l ].xi)2 p2-

+ C1
2 [(ai2 - Co 0 C1 xil) 2( (2.21)

Notice that the portion of Equation (2.21) that is under-

lined is equal to zero for solutions derived, and all of

the remaining terms are strictly positive except those

containing q and (p-l). Thus, the second derivative of

L(xil) is strictly positive as long as q and (p-l) are

greater than or equal to zero. The second derivative is

also strictly positive if q > 0 and p > 1.

Property 2.5

The point (xil, xi2) on the linear facility,

x2 = C0 + C1xl, that minimizes the modified distance

function Xqi(X) is independent of q as observed from

Equations (2.15a), (2.15b), (2.16a), and (2.16b).

Property 2.6

If the existing facility i is on the linear facility,

x2 = C0 + C1x1 ; then xil = ail, and xi2 = a12.

Proof. (Since the proofs for xil = a l for Equa-

tions (2.15a) and (2.15b) and the proofs for xi2 = a i2

-.- 5
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for Equations (2.16a) and (2.16b) are similar, only

xil = ail for Equation (2.15a) is proven here.) If the

existing facility i is on the linear facility, then

ai2 = CO + C a il. Substituting this relationship into

Equation (2.15a), the following equation results:

2 1/2l1/(p-l)ail + [(C ) ][C + Cai - Co]
_ 0 01

il 1p/(p-l)1 [C1

* - [C 1 [(C1
2 )1 /2]11/(p- 1 )}. (2.22)

Since C1 must be greater than zero for Equation (2.15a)

to be a solution to Equation (2.13), the following opera-

tion can be performed:

a i { l + (C 2 ) / 2 ] p / ( p -1 ) { I -
[ ( C 2 ) / 2 p / p - I) }

1 - (CI2]p/(p-l)
1 (

- ail.

The following properties eliminate the problem associ-

ated with the first-order partial derivatives of the modi-

fied distance function.

Property 2.7

The slope of the line connecting the existing facility

i to the point (Xil, xi2 ) on the linear facility,

x 2  C0 + C1 X1 , that minimizes the p-norm distance taken

,1 5
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to the q power is equal to -l/[(C 1
2 )1 /2] / (p -1 ) if C1  0

and equal to 1/[(C 2 )1/2 ]1 /(P-l) if C < 0.
1 1

Proof. As previously stated, the coordinates of the

point on the linear facility that minimize the p-norm

distance taken to the q power from the linear facility,

x2 = C0 + C1X , to the existing facility i when C1 > 0 are

given by Equations (2.15a) and (2.16a). Substituting

these values into the definition of the slope, the follow-

ing equation results:

AX ai2 - xi2 -1
Slope = A- i = a i _ 2 1/2] /p_- .

X1  ai1  X 1  ((C 1 ) I

For C1 < 0 the optimal values for xil and xi2 are

given by Equation (2.15a) and Equation (2.16b), respec-

tively. Substituting these values into the definition of

the slope, the following equation results:

X 2  ai 2  - 12  1
Slope a AX1  ai1  x i [(C 1

2 )1 1/p-1 "

If the existing facility i is not on the linear

facility, x2 = C0 + C1xI , and C1 0 0; then xil = ail if

and only if p equals the limit as p approaches 1 from the

negative direction.

If the existing facility i is not on the linear

facility, x2 = C0 + C1xI , then the only way for xii = ail
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is if the slope of the line connecting the two points is

vertical (i.e., AX 2/X 1 approaches infinity). Since the

only way the slope can be equal to infinity is when

(l-p) = 0 (i.e., the limit of (l-p) as p approaches 1

from the negative direction?, then the limit of the slope

as p approaches 1 from the negative direction is as fol-

lows:

lim ( -
( C1 2) 1/2]P-=

1/p
lir -(-(C2 ) 1 / 2 1l/P - P/P

Property 2.8

If the existing facility i is not on the linear

facility, x2 = CO + CIx 1 , and C1 # 0; then xi2 = ai2 if

and only if p equals the limit as p approaches 1 from the

positive direction.

Proof. If the existing facility i is not on the

linear facility and C1 # 0, then the only way xi2 = ai2

is when the slope of the line connecting the two points

is horizontal (i.e., AX2/4X1 = 0). Taking the limit as

p approaches 1 from the positive direction, the following

formula results:
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1 1

[(C

lim 1
p-l - i'p )= 0.

[(C12 )l/ 2]pip - 1/p

Thus, the property is proven.

As can now be seen using Property 2.7, Equation (2.11)

is defined for all values of p and q with the exception of

p = 1. Likewise, as can be seen using Property 2.8,

Equation (2.12) is defined for all values of p and q

except p = 1. The first derivatives are undefined at

p = 1 because the Lagrangian function is discontinuous at

p = 1. The point (xil, xi2) that minimizes the modified p

distance from the existing facilities to the linear facil-

ity for p = 1 is as follows:

Limit as p approaches 1 from the negative direction:

=l

xi2  o + Clail.

Limit as p approaches 1 from the positive direction:

Xil = C1 (ail - CO ),

xi 2 = ai 2 .

Thus, the derivation of the point (xi, x is valid
il xi2~

for all values of p and q, and the point (xill xi2)

il' i2
I.
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minimizes the p-norm distance taken to the q power with

q 1 0 and p > 1 or when q < 0 and p < 1.

Interpretation of xil, xi2

The results of Property 2.7 indicate a physical

interpretation for p within the modified distance func-

tion . Working only with the case where C1 > 0 (even

though the conclusions are generalizable to C1 < 0), the
slope of the line connecting the existing facility to the

2 1/2] i/(p-l) Ta
linear facility is equal to -1/[(C 1 ) I . That

the slope of this line is either vertical or horizontal

as p approaches 1 from the negative or positive direction

has been shown. That the slope of this same line is equal

to -1 as p approaches infinity can also be shown. For

any other value of p the slope of the line minimizing the

modified p-norm distance is a function of the relation-

ship between the values of p and CI. If p = 2, for

example, the slope is equal to -l/[(C 1
2 )1"2] which is the

perpendicular distance when C1 > 0. As p gets larger,

the absolute value of the slope of the line connecting

(all, ai2) to the linear facility for a given value of

C1 gets larger.

Since the p-norm distance taken to the q power is

minimized in the generalized, bivariate, linear location

problem, the value of p determines which distance will be

minimized. When p approaches 1 (i.e., the rectalinear
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case), the minimized distance is in the direction of only

one of the variables. To use regression terminology,

minimizing the error in only one direction assumes that

one variable is fixed and that the other variable is

random and accountable for the total error (i.e., indepen-

dent and dependent variables). When p is not equal to 1,

the error is divided between the two variables according

to -ii/C 1 2 )1/2 i 1/p-l, and the terms "independent" and

"dependent" variables are no longer appropriate. Thus, p

is the parameter within the generalized, bivariate, linear

location function that determines the relative weight

between the two variables with respect to the error term.

-. 1 . . V



CHAPTER III

WEBER REFORMULATION: MODIFIED

DISTANCE FUNCTION

As previously stated, locating a linear facility is

a two-step process involving determination of (1) the

point (xil, xi2) on the linear facility "closest" to the

existing facility i, and (2) estimates for the linear

parameters C0 and C1 . In Chapter II a method of deter-

mining the point (xill xi2) on a line, x2 = C0 +

that minimizes the modified p-norm distance to the exist-

ing facility i located at the point (ail, ai2) was illus-

trated.

Before estimates for the linear parameters C and C1

can be determined, more detailed consideration must be

given to the Weber formulation of the generalized, bivari-

ate, linear location problem. In this chapter, therefore,

the modified distance function i(Co, CI ) associatedpi 0 1

with the p-norm distance taken to the q power from the

existing facility i to the point (xil, xi2)., on the linear

facility is developed. The convexity or lack of convexity

of P i(C0 , C ) is also investigated. Finally, the Weber

formulation of the linear location problem is presented.

.
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Formulation of £q. (C, CI)

The values of x il and xi2 developed in Chapter II can

now be used to formulate the modified distance formula

9qi(Co, C 1  Inserting these values into Equation (2.1),

the following two formulations corresponding to the pairs

of values for xil and x i2 result:

C [{l - [C1 ] [(C 1
2 )i/2]1/(p-l)}2]q/2

P* i [{ - [ 2CI p/(p-l)}2]q/2

{i + HCI2)I/2]p/(p-I)}q/P

* [(ai 2 - CO - Cail) 2] q/ 2 .  3.1b)

The solution in Equation (3.1a) resulted from using

the first solutions for xil and xi2 (i.e., Equations

(2.15a) and (2.16a)), and the second solution in Equa-

tion (3.1b) .%sulted from use of Equations (2.15b) and

(2.16b). The only difference between Equations (3.1a)

and (3.1b) is found in the following terms:

I!
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[{l - [CI H(C 2 ) 1/21 I/(p-l)j2 1 q/2)
,  (3.2a)

2 1/2 1/ (p-i)}2,q/2.
[{i + [C1 ] [(C 12) I] I]. (3.2b)

Remembering that the first pair of solutions is valid only

when C1 > 0 and that the second pair of solutions is valid

only when C1 < 0, the following operations can be per-

formed:

{I - ICl1 [(C12)l/ 2 ]l/(p-l)} 2]q/ 2 , (3.3a)

[{i - IC1 1 [(C12 )i/ 2]l/(p-l)} 2 ]q/ 2 . (3.3b)

Thus, the two terms are identical, and the following

single formulation for q*i(Co, C results:

[Cai2 - C0 - Clail)2] q / 2

pq 0 1 [1 + [(C 2)I/2]p/(p-I)]q(p-l)/p (3.4)

A simplified definitional formula for q .is as follows:

Iq. (Co I )  ai2 - Co - Clail qC1). (i + cI/PI)qpl/ 35

Convexity Properties of L

To investigate the convexity of the modified distance

function Zq i(Co, CI ) the first- and second-order partial

derivatives of £ (C0 , C1 ) with respect to C and C must
0

I.

IL
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be taken (Hillier & Lieberman, 1980). Using either the

calculation Formula (3.4) or the Definitional Formula

(3.5), similar difficulties to those encountered in

Equation (2.5) are encountered with respect to undefined

rth partial derivatives if q < r and ai2  C + C a

To remove these problems, a smoothing constant m similar

to the concept used by Morris and Verdini (1979) for the

point location problem can be employed. Using the hyper-

bolic smoothing constant m, the following equation is an

approximation for Zq,(Co, C1 ):

[V.2 + mlq/2

q (C, C(3.6)pi o 1(p-l } / p

where

Vi = ai2 - C - C1ail for i 1, ...,n,

G = 1 + [(C 1
2 ) 1 / 2] p/(P-I)],

p 1,

q > 0, and

m > 0.

One definition and several theorems from Protter and

Morrey (1964) are helpful with respect to the proofs of

properties within this section.

- - - - - ----
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Definition 3.1

A function f is said to be continuous at (b, d) if

and only if:

(a) f is defined at (b, d), and

(b) lim f(x, y) = f(b, d).
(x, y)-(b, d)

Theorem 3.1

If b is a constant and f(x) = b for all values of x,

then for any number d

lim f(x) = b.
x-d

Theorem 3.2

If m and b are constants and f(x) =mx + b for all

values of x, then for any number d

lim f(x) = md + b.

Theorem 3.3

If f and q are two functions with

lim f(x) =M , lim q(X) = 2
x-d x-d

then

_ _ Mxrd g(x) M -2 where 42 # 0

+ { +- - -+ +'+ , . L+"=.++ .'- ',L.+. ...... + - S . .. -.. . " +. . .. ' + ..
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and

lir [f(x) * g(x)] = 1 * M2 .
x~d

Theorem 3.4

If f and g are two functions with

lir f(x) = M lir g(x) = M2
x-d xd

then

lim (f(x) + g(x)] = M1 + M2 '

Theorem 3.5

If n is any positive integer, and if f is such that

lim f(x) = M;
x-*d

then

lim [flx)]1/n MI/n.ur ( x]
Property 3.1

The limit of Lqi(, C1) as m approaches zero is

£pqiP 0C'C

P1 0

Proof. Using theorem 3.1, the following can be

stated:

iV 2  and lir Gq ( p -l)/p -G q (p - l)/P= L*
mi0 m+0
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Using theorem 3.2, the following can be stated:

lim [V 2 + m] = V. 2 = L*
S 2'0

Finally, using theorems 3.3 and 3.5 and the knowledge that

q/2 may be represented by a rational number without

severely limiting the domain of q, then

im L q . (C, C lim 2 }
p-iO0p1 = m 0 L*

m+O I 1  u~

(L* q / 2
j

- -- = q1 (CE
1

The first- and second-order partial derivatives of

Lq (CO  C ) with respect to C and C (i.e., Equation
P 0 1 0

(3.6)) are as follows:

8LqilCo' C1 ) = [ g 2 (q/ 2 )-lv. (3.7)

L (C , C 1 )  q

2 oqCp-1 l/p [Vi 2 +m] (q/21-2

ac0  Gp 1

[Vi 2 (q-1) + ml, (3.8)

]t
. .- .*.~,..- -
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i ( 0C 1 )2 + m] (q/2)-i

1 [[(p-1)/p] +l1

. {G~iaiI + C1 ( 1 / 2 ] (2-p)/(p-l)
{ GV ia.i 1c

* (Vi 2 + M)}, (3.9)

a2 Lq (C, C1 ) q(Vi2 + M](q/ 2 )-2

.-- P = { 2 a i [ V i  (q-1) + m)3CI 2  G [q(p-l)/p] + 2 } {

+ 2qCailViG[(Cl 2 )1/ 2 ] (2-p)/(p-l) [Vi 2 + m]

[(1),2] (2-p)/ (p-1) [V 2 +m2
HC V i+ m]+ (p-'l)

* [(q + 1)(p - I)[CI 2 ) 1 / 2 ]p/(p-I) - I},

(3.10)

P2Li(C o C )  q[V 2 + m] (q/2)-22
a aC 1) = G [q/(pl./2 p+l }(Gail[Vi 2(q-1) + ml

+ qC 1 [(C 1 2)I/2] 2 - p / p - VIVi 2 + m]}. (3.11)

Property 3.2

Lqi(Co, C1 ) is continuous for q > 0 and p > 1.
pi 0

Proof. Let fi(Co, C1) = Lqi(CO, C1 ), and consider

fi(C0 C1 ) at any point c0 e C0 and c1 C C1 where c0 and

c are real numbers. By inspection, requirement (a) of

-
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Definition 3.1 is satisfied since fi(co, cI  =V2+m]q/2/

G q (p-1)Ip -  i = 1, ...,n are defined for all c e C and

c 1 C1 and q 1 0 and p > 1. Requirement (b) is satisfied

because

b ) ,  f (b, d) = fi(co, cI

(b, d)-(c 0 1 c1 ) i 1 0 1

for all i = 1, ..., n and c0  C0 and cI e C1. The proof

for the preceding equation is similar to the proof in

Property 3.1. Therefore, the function is continuous for

q 1 0 and p > 1.

The case of p = 1 is not covered by the preceding and

subsequent properties because fi (C, CI) is undefined at

p = 1. The situation where p = 1 is addressed separately

with properties of the Weber formulation.

Property 3.3

The first- and second-order partial derivatives of

Lq (C0 , C) with respect to C0 and C1 are continuous for

q 1 0 and p > 1.
I I

Proof. Let fio(Co, C I  L (Co  C1)/ Co, fil(Co, C1)
-aL q(Co r io f = a2 L q (C o' Ml) 02, f"(C oI Cl

2q 2 ~ 22Li(CO , CIMCI
,  and fi (C, C 1) =a Li .C , C 0 aC C

pi f0 (Cl 1 P.0

and consider fi(Co C) fil(C o C1'' f C I

f(Co, C ) and filo (C C ) at any point c e C and

c1 C C1 where c0 and c1 are real numbers. Again, by

- ~ 'p
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inspection fi (c, c 1 ), f i(co, c 1 ), f (C, c1 )
U 11

f" (co, Cl), and f"l (Co, cI) satisfy requirement (a) of

Definition 3.1 since they are defined for all co e C0 and

c 1 C C1 1 i= , ... , n and q> 0 and p > 1. Requirement

(b) is satisfied because

lir f io(b, d) BC°
(b, d)-(c o , c 1 )  0

lim fi(b, d) = 0 c1)

(b, d)4(c, ca

2 q
lim fio(b, d) = P 2' 

(b, d) (c , c1 ) C1

a 2L qi(co , cI

lim fil(b, d) = P 0 2 1

(b, d)-(c o, 1)  aC1  1

a 82L'qi(c O c I ) C
lim fil(b, d) P= 0C C

(b, d)-(c o0, c 1) 10

for all i = 1, ..., n andc 0 c 0 and c 1 C1 . The proofs

for the preceding equations are similar to the proof in

Property 3.1. Therefore, the property is proven.

property 3.4

Lqi(Co , C1 ) is strictly convex with respect to C0 for

q>l and m > 0 and strictly concave for 0 < q < 1 and the

limit as m approaches but does not equal zero.
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Proof. Since Lq (C, C has continuous second

derivatives for all points c0  C0 where c0 is a real

number, it is sufficient to show that the second-order

partial derivative with respect to C0 is strictly positive

for q > 1 and negative for 0 < q < 1 where the limit of

m approaches but does not equal zero. From equation

(3.8) the second-order partial derivative of Lq (CO, CI )P 0 1
with respect to C0 is given by

a2 Lq.(
= q [Vi2 + mI (q/2)-2

aCo 2 G q(p-l)/p[i

[Vi 2 (q-1) + m].

Since G and m are always positive, a2Lqi(C , CM)/Co2 is

strictly positive for q > 1. if 0 < q < 1, 3 2Lqi(C. Co )/

Co02 is strictly negative as m approaches but does not

equal zero.

Properties of the Weber Formulation

Substituting Equation (3.5) into the Weber formula-

tion produces the following generalized, bivariate, linear

location problem:

n
Z Wilai2 - CO - Clail I

q

C (Co ,  C1)  - = 3)i-
[ C 1 + C llP/(P-1)]q(p-l)/p (3.12)

I.
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Again using the hyperbolic approximation function to

ensure defined derivatives and to eliminate computational

difficultieE associated with the absolute value functions,

the following approximation of ciq(Co, C1 ) results from

substituting Equation (3.6) into the Weber formulation:

n +
Z Wi[(a i2-C-c 2 q2

CL (CO, C1 1 = i=l i+
[ + [(C) /21p/(p-l)1q(p-

I)/p(
1 (3.13)

Earlier the statement was made that the previous

properties in this chapter were applicable only when p > 1.

The following properties relieve this restriction for

p-1.

Property 3.5

2The limit of CL (Co , C as p approaches I from the

negative direction is the regression of x2 on x1 taken to

the q power.

Proof. The limit of Gq (p- I)/p as p approaches 1

from the negative direction is as follows:

im, (1 + ICl{P/(P-1)]- [ + 010 M 1. (3.14)

Thus, the Weber formulation, when p approaches 1 from the

negative direction, is as follows:
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n
cO(c , C) = E Wta[ - C - C qail (3.15)

i=l i2

When Wi = 1 for i = 1, ..., n and q = 2, the generalized,

bivariate, linear location problem reduces to the least

squares regression of x2 on xI.

Property 3.6

The limit of C~q(Co, C1 ) as p approaches 1 from the

positive direction is the regression of x and x2 taken

to the q power.

Proof. From Equation (3.15) C£ (C, ) is equal to

the following equation:

n
Z W. ai2 - C 1i~

Ctq(Co, C1 ) - i=1 i
(I + IcII

Dividing the numerator and denominator by 1/1 CI q,

Ctq(C0 , C1 ) becomes

n iZ Wl (a.2 - CO - 1la il)/Cl i
C it q ( c ,  C )  - - _ .

[i 1  / C1 I p / ( p - " + 1]q(p-1)/p

Taking the limit of CLq(Co , C1) as p approaches 1 from the

positive direction, the following result is obtained:
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n

lir [C~q(C C)] = /Cq

p 0' 1 i Ia(3.16a)
-t-C

Rearranging the linear constraint, x2 = Co 1 ll to
I S

x = (x2 - Co)/C 1 and defining C1 = 1/C1 and C0 = -Co/Ci e

the limit of CAq C I  as p approaches one from thep 0'

positive direction may be stated as

poC 1= Z Wilail - Co - C, i21  (3.16b)
i=l

where

-C ' 1
Co = and C I =

C 1  C1

Equation (3.16b) is just the statement of the objective

function for regression x1 on x2. As can be seen, regres-

sion of x1 on x2 may be solved indirectly as a special

case of the generalized, bivariate, linear location

problem. The preceding result is supported by Property

2.7 where the statement was made that the slope of the

line connecting the existing facility i to the point on

the linear facility that minimizes the p-norm distance

taken to the q power is horizontal (i.e., equal to zero)

when the limit is taken as p approaches 1 from the

positive direction.

,, N
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Property 3.7

CL q(Co C1 ) is strictly convex with respect to C forp 0o

q > 1 and m > 0 and strictly concave for 0 < q < 1 and the

limit as m approaches but does not equal zero.

Proof. This property follows since CLq(Co , C1 ) is

the sum of strictly convex terms when q > 1 and m > 0 and

strictly concave terms when 0 < q < 1 and the limit as m

approaches but does not equal zero.

No general statement can be made at this point of the

analysis concerning the overall convexity or lack of con-

vexity of CLq(Co, CI) since this property changes with

different values of p and q. By Property 3.7 CL q(Cop o

is not convex with respect to C0 for values of 0 < q < 1.

This is a sufficient condition for stating that CLq(C, CC1 )

is not convex within the range 0 < q < 1 (Hillier &

Lieberman, 1980). Yet, by Properties 3.5 and 3.6

CLq{C o , C1 ) reduces to simple regression when q = 2 and
PO 0

the limit is taken as p approaches 1 in either the plus

or minus direction and simple regression is strictly con-

vex (Neter & Wasserman, 1974). This inconsistency

requires that convexity be investigated for each indi-

vidual combination of p and q.
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Summary

Detailed in this chapter is the Weber formulation of

the generalized, bivariate, linear location problem. The

problems associated with undefined derivatives require the

addition of a hyperbolic smoothing constant. The modified

Weber formulation of the bivariate, linear location problem

is not necessarily concave or convex. j

waft



CHAPTER IV

SOLUTIONS TO THE GENERALIZED, BIVARIATE,

LINEAR LOCATION PROBLEM

The complex structure of the Definitional Formula,

Equation (3.12), and the Weber Reformulation Equation

(3.13), along with the associated nonconvexity prohibits

a universal analytical technique for solving the general-

ized, bivariate, linear location problem. Yet, the situa-

tion is not hopeless for those requiring analytical

solutions. Just as illustrated in Chapter III, linear

regression (i.e., q = 2 and p approaches i from either the

positive or the negative direction) is one special case

of the generalized, bivariate, linear location problem.

Other special combinations of p's and q's likewise, reduce

to common forms of analysis that are currently employed.

In this chapter the relationship between the general-

ized, bivariate, linear location problem and current forms

of analysis is illustrated. In addition, certain unique

combinations of p's and q's that represent models not

presently employed are solved by various analytical or

numerical techniques. Finally, a heuristic technique is

K
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presented for a general solution 
of the generalized,

bivariate, linear location problem.

The Limit as p Approaches 1 Family

If, in a manner similar to that used in the proof of

Property 3.5, the limit is taken as p approaches 1 from

the negative direction, the definitional formulation of

the generalized, bivariate, linear location problem Equa-

tion (3.12) becomes the following formula:

n

c1 (C0 , C1 ) = a i2 - Co - Clai q  (4.1)
i=l

The distance being considered in this family of models is

the vertical distance from the existing facilities to the

linear facility to be located taken to the power q.

As shown in Property 3.5 when q = 2, Equation (4.1)

becomes

2 nC£-(o CI  =EW.(a. -C C 2
0 1 i=l - C1ail) (4.2)

which is simply the regression of x2 on xI . The solution

for this well-known model is found by using the classical

unconstrained optimization technique of taking the partial

derivatives of Equation (4.2) with respect to C0 and C1

and setting each result equal to zero. The resulting

, I,



57

so-called "normal equations" are then solved simultane-

ously (Neter & Wasserman, 1974).

If q = 1 in Equation (4.1), the solution technique

for the generalized, bivariate, linear location problem

is not as straightforward. The following result, after

the substitution, prohibits the use of the classical

optimization technique:

1- - -

C 1  C 0 , C1) E Wila i2 -C li 43i=l

One of the first solution techniques used to solve

Equation (4.3) was proposed by Charnes, Cooper, and

Ferguson (1955). They demonstrated that the following

linear program produced an optimal, although not neces-

sarily an unique, solution (Sposito&Smith, 1976).

Let di and d. be the vertical deviations "above" and
1 1

"below" the linear facility to be located for the ith

existing facility. Thus, for any existing facility i

- C + d - d- = a (4.4)
1 ~ ~ 11 o1

The simplex formulation of the problem takes on the

following structure:

n
Minimize E (W d + Wid-)

i=l

!K
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subject to

C a + C0 + d -d =a i .,1li i ai2 1i

di, di > 0, and

C1 , CO are unrestricted. (4.5)

With modifications for unrestricted variables, any simplex

program can be used to solve this linear programming

formulation.

Linear programming can be used to solve another

member of this family--specifically, when q approaches

infinity (Chebyshev criterion). When q approaches

infinity, the problem becomes the location of the linear

facility such that the maximum vertical distance from the

existing facility to the linear facility is minimized.

Wagner (1959) demonstrates the formulation which follows.

Again, let d represent the deviations from the existing

facility to the linear location line to be located. In

this case, however, let d be common to each of the follow-

ing inequalities:

-d < C1 ail + CO - ai2 < +d V (4.6)

Therefore, the linear program becomes

L

.,I- ...- r ...
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Minimize d

subject to

C1ail + Co -d < ai2  Vit

C1ail + C + d > ai2 ¥it

d > 0, and

C1 and C are unrestricted. (4.7)

1 0

Again, any simplex program can be used to solve the pre-
ceding formulation (i.e., with slight modification for

unrestricted variables depending upon the program).

Forsythe (1972) extended the range of analytical

solutions for this family for values of 1 < q 1 2 by the

use of gradient search techniques, and Morris and Norback

(1980) extended the range for values of q between 2 and

infinity by the use of convex programming and Kuhn-Tucker

conditions. The applicability of these techniques results

from the property which follows.

Property 4.1

CLq(Co , C is convex with resptct to both C0 and Cp oC 1

when the limit is taken as p approaches 1 from either the

positive or the negative direction and q > 1.

i

i'
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Proof. The Weber formulation with the hyperbolic

smoothing constant for the generalized, bivariate, linear

location problem when the limit is taken as p approaches

1 from the negative direction is as follows:

n(C, C W a -C-C 2 m]q/2.

i=l 2(4.8)

The first partial derivatives of CL(q(c4 C withre c

to C and C1 are as follows:

CL_ 0o C1) n
3= -q E W. [(ai CO  )2 (a/2-]1 Co i i2 0- - C1 ail +m

* ai2 - C0 - C 1a)il, (4.9)

2CLq_(C o C1 n

o -q-C a 2 + m) (q/2)-l
1 3C l i-l i i2  0 - 1a~ +l

* (ai2 - CO - Clail)ail. (4.10)

The second partial derivatives of CLq_(C O, C1) with

respect to C0 and C1 are as follows:

S2CC C1) n 2/

o2 = q{ Z W.[a - C
0  Cla 2 + m] (q/2)-2

3Co2 i=l' 1 i2 0 l1il

* [(ai2 -C 0 Ca i)2(q 1) + (4.11)
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2qZWU -CqC_2+mCL (CO , C1 )  n (q/2)-2CI =q{i Z W i [ ( a 12  0 CO _ l ) 2 + m](/2-

2
[(ai 2 - C0 - Clail) (q-l) + m]ail}1 , (4.12)

a 2CLq_ (Co C )  no C1  = q{ Z W.(a. C - C a. 2 + m]

ac ac1  i 1  12 0 111l

((ai 2 - C - C ail)2(q-1) + m]ail}. (4.13)

The determinant of the Hessian, D, for the family of

functions where the limit is taken as p approaches 1

from the negative direction, Equation (4.1), is as

follows:

a 2CL (Co ' C ) 2CL-(Co Ca 2c C-(o C ) 2
D= ( H o 1 2 ) - -  (C1  0 '

= q2 U W. [(a22  C + m](q/2)-2

i=l
2

Hai - CO - ai (q - 1) + mil

n 2 (q/2) -2
=1 ( Cia2 0W. (a - CO  + m

*((ai2 -C 0 - Clail) 2 ( - i)+ ea21

Ha2(q -1) +mlal

i=i2.[ai2 -C c 1 2ai 1) + m il21-2

*C[ai - c cail)2(q - 1) + m~ail }21. (4.14)

.... .- " . ....... ... -!- -.
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If this determinant (4.14) is positive, it is a sufficient

condition for convexity since both Equations (4.11) and

(4.12) are positive when q > 1. The sign of Equation

(4.14) is difficult to evaluate, however, because of the

summations. An indirect method of determining the con-

vexity properties of CLq_ (Co, C1) is examination of the

function on a term-by-term basis (i.e., L? i(Co, C13. 0' C 1

Given that

Lqi (CoI C) =(a 2 -C -C a ) 2 +m] q / 2 , (4.15)

the relevant partial derivatives with respect to C0 and

C1 are as follows:

DLq-i{Co CI
1 C 0 C1  -q[(a C - Clai2 + m] (q/2)-1

3C0 i qa 2 - 0  C1 a 1I0
* (ai2 - CO - Ca il), (4.16)

8Lq-i (Co CI
1 .i(0, C1) 2 (q/2)-l

=- -q[(a 2  - C 0  - Ciai) + m]

* (a. - C - C a )ai, (4.17)
2o l il

1I-i(Co, C1 a -1-- Cai 2 +m] (q/2)-2

2 q~~ 0  C1

2*H(ai - C O - C ail (q -1) + m)], (4.18)

. . .. .... .. ....
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1 i (C0 , C1) q[(ai2 C 0 C1ail 2 + m ] (q/2)-2

(ai2 - - Cai) (q-1) +ml ai 2  (4.19)

i2 0 qli

aL-_ (Co, C1) 2
= q[(a -C - ail +m] (q/2)-2

aCo C1  i2 0 1  +m

(ai2 -C C1 ail) (q-1) +m]ail. (4.20)

The determinant of the Hessian, D, for Lq (C0 , CI) is

given by the following formula:

2 q _2 -q _C } 2 ' coq _2a 1 LI( C1 L1i(C°'2 CI I  1) aL( (C°' 0 - -- 1) 2
a0 2C 3C1  1 9C o C1 )2

2 2 (q/2)-2
q [(a 2 - C - Cai) + m]

* [(ai 2 - Co - C1a il) 2(q + m 2[ail - ail2 ]

= 0. (4.21)

Since Equations (4.18) and (4.19) are positive when q > 1

and each element of this determinant is equal to zero,

L q_i(C0 , C1 ) is convex. This property implies that

CLq_ (CO , C1) is convex since it is the sum of convex

terms, and the property is proven.

For 0 < q < 1 Equations (4.11) and (4.12) are posi-

tive indicating CLq_(Co, C1) is concave. Therefore,

gradient search techniques and convex programming are not

... .. . . ~... ... '
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conducive to determining optimality. Barrodale and

Roberts (1970) proved that the values of C and C1 which

optimize Equation (4.1) when 0 < q < 1 must pass through

at least two points (aill ai2 and akl, ak2 where i 0 k).

Thus, a simplistic solution is the determination of each

possible line that passes through two data points and

determination of the value of C q_(C , CI ) for each line.1 0
(See Barrodale & Roberts, 1970, for a proof of the above

procedure. A variation of the proof is presented later

in this chapter.)

The p = 2 Family

The Weber reformulation of the p = 2 family of the

generalized, bivariate, linear location problem is given

by the following formula which is a special case of Equa-

tion (3.13):
nn i(i - Co - Ca12 + mjq / 2

CLq(C O, C1 ) =

21[l + C 2(4.22)

The members of this family of the generalized, bivariate,

linear location problem seek values of C and C1 that
0 1

minimize the perpendicular distance from the existing

facilities to the linear location facility taken to the

q power. Although the publications in this area have not

i:L
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been as plentiful as those in the p 1 family, extensive

research has been done for certain cases.

The q = 2 model is the most common application of

the p = 2 family. More commonly known as factor analysis,

this model determines values for C0 and C1 that minimize

the expression

n 2
Z Wi[ai2 - C - C1ailI

CL2 (Co, C1 ) = i=2 (4.23)
2 0 ~ 1lil C1[i1+ C1 2]

Classical optimization can be used to solve the preceding

expression even though the typical method employed involves

formulating the eigen-structure (Green, 1978). In the

simple bivariate case, the following procedure is adequate.

1. Determine the first-order partial derivatives:

CL2 (Co , C1 ) n
2 0 -2ZWi[ai 2 - Co - Clail] (2.24)

[i + C 12

aCL 2 (C, C) n2 0 = -2 { E W.[a. - C- C2a [I+C12]a
i 1 1 2 C0  C1a 1H.. 1 ]a.

n 2
+ C1  ZiW i[ai2 -C 0 - 2aill 1. (4.25)

C~a~i] }

kI'
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2. Set Equations (4.24) and (4.25) equal to zero,

and solve simultaneously:

C -A ± (A
2 + 4B ) I /2

= 2B (4.26)

where

n n n n
A E Wi[ Eai a - Z W aa. a], W an

=1 i =l i=l i =l i 1

nE ( w.a.)
i=l 1 12

n n n n
B =E W a. E Z~Wiai Z W. E W.a..a. and

i=l i il i-lii i=l 1 i=1 I il i2'

n
ZW.a -Ca

i=l i 2 1i
Co 2 (4.27)

E W.
i=1

The preceding formulation will result in two solutions:

maximizing Equation (4.23) and minimizing Equation (4.23).

Morris and Norback (1980) extended the work of

Wesolowsky's numerical technique into an analytic solution

for Equation (4.22) when 0 < q < 1. Using a technique

similar to that of Barrodale and Roberts (1970) for the

vertical distance, Morris and Norback proved that a line

minimizing Equation (4.22) must also pass through at least

L

F
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two existing facilities. Thus, the solution technique

for 0 < q < 1 and p = 2 is identical to the technique used

to solve the limit as p approaches 1 from the negative

direction family.

Morris and Norback pointed out, in the same article,

that the techniques used to solve the vertical distance

problem for q > 1 cannot be used for the p = 2 family

since Equation (4.22) becomes nonconvex and nonconcave

when q > 1.

The q = 2 Family

The q = 2 family of the generalized, bivariate,

linear location problem is significant for two important

reasons: (1) linear regression (p approaches 1 and

q = 2) and factor analysis (p = 2, q = 2) are the most

widely used applications of linear models today, and (2)

the mean which is the basis of the q = 2 model allows for

simplified solution techniques that provide analytical

results regardless of the p value. Since parametric

statistics are based upon the mean, the q = 2 model has a

very strong theoretical attractiveness even though it is

overly sensitive to outliers. The simplified solution

techniques for the q = 2 model result from the property

which follows.

F
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Property 4.2

Given the function

n [a2 +emq/2
q(C E 1W.( (a - C - C1a i)+]CLf(Co, c ) _ -- i2 1 -C(4.28)

[1 + [(C1 2 )1/2]p/p-1]q(p-1)/p (4.28)

the values of CO and C1 that minimize CL (C , C result

in a line that passes through the point (ai a 2 ) where

n n
Z W.a. Wa131i=l i i=Iai2

a= n and a2

ZW. E W.
i=l I i=l 1

Proof. If q = 2, then Equation (4.28) reduces to:

n
Z Wi(a -C - Cai

2 i 1 1  2 oCL (Co ' C1 ) = 1+ l2(p-l)/p" (4.29)pi [0 2 1()/2]p/(p-l)]2pl/

S* =*-

Let ail =ail -a 1 and ai2 = ai2 - a 2 be the mean cor-

rected values for the existing facilities (all, ai2 ).

Substituting the values a l and ai2 into Equation (4.29)

and taking the first partial derivative with respect to

Co , the following result is obtained:
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n . *

3L (Co, C1 ) -2 Wi(ai -C - Cail)
_______ 0 = (4.30)aCo0 [1 + [(C 2)I1/2]P/(P-I] 2 ( p - I ) ) p "  4.)

I

Setting Equation (4.30) equal to zero and substituting

a 1 i= a1l - al and ai 2 - a2 results in the following

equation:

n
i=l W(ai 2 -a 2 - C0 - C1 (ail - a 1 )) = 0,

n n n n
EWia2 - Wia 2  Z W.C -C 1  i

i=l i=l i=l i=i

n
+ CLEWa =0,

i=l

and therefore, C = 0. (4.31)

By mean correcting the data, the coordinates are trans-

lated such that the point (ai, a ) is located at (0, 0).

Since C0 - 0 when the data is mean corrected regardless of

the p value, the property is proven.

With the knowledge that C1  0 when q = 2 and the

data is mean corrected, Equation (4.29) can be rewritten

as follows:

i

'4
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n . * 2Z W i(ai2 - Ilail)

CL2 (C)i= 1/2l ( 2  aI) (4.32)[i ( + [(C 1)i/ ]1 (- )](1 l /

Taking the first derivative with respect 
to C1 and setting

it equal to zero produces the following results:

n

dCL 2(C) -2 Z Wi

dC1 [i + [C2) 1 / 2 ] [2(p-l/p1+l

• [i + ](/2(p/P-i)a2 - C1ai)ai

+ Cl(C 2)i/2](2-p)/(p- 1(ai 2 - C(a4.33

~i 1~a~ -

(4.33)

[(2)1/2] (p-2)/(p-l)n .. •
I(Cl) ZE Wil(a i2 - la il )a il

i=l

2 n

" C1 W.i(a i - C a l)ailn 2
2.

n * * 2i

+ C I ZIWi(ai2 - Clail)

- 0, (4.34)

n / [ C •a]a*

C1) 1W[ai2 - 2la12a1. 24132

2- n *-* * . .Wi~i2-Caiai

i=l

,1t
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Let p be equal to a rational number u/v. Then Equation

(4.35) can be reduced to:

! ' [Wi(ai2 - Clail)ai2 ]1 (uv
i i=l

n , * * 2(u-v)

- Z Wi (a - Cl ai)ail] = 0. (4.36)i=1 2 lii

Given the assumption that p is a rational number

(i.e., not an overly restrictive assumption), Equation

(4.36) can be solved for any value of p. If the resultinq

polynomial is greater than order 4, a numerical technique

such as the Birge-Vieta iterative method (McCalla, 1967) is

required to determine all possible solutions for C1. The

value of C1 that minimizes Equation (4.32) can then be

found by straight substitution. Theoretically, the pro-

cedure outlined in this section is applicable for any values
of p (i.e., as long as p can be considered a rational

number). Certain values of p, however, result in polynomials

of excessively large order (i.e., p = 1.51 produces a 301th

order polynomial, while p = 1.50 produces only a 6th order

polynomial). In most cases, use of the heuristic solution

presented later is easier.

The q = 1 Family

The q = 1 family of the generalized, bivariate,

linear location problem describes the median line that

i . . ... ' K
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minimizes the absolute distance in the p-norm direction.

The q = 1 family has an advantage in that the located

linear facility is less susceptible to outliers. For

q = 1 the objective function to be minimized is given by

the following equation:

n
1 Wil ai 2 - C0 - CO aill

CL] (Co, C1) = i=l - (4.37)p0 1 [I + [(C 2)I1/2]1P/(P-I)] I(4.37)P

The following property implies a simplified solution

technique for the q = 1 family.

Property 4.3

A solution (CO and CI ) to Equation (4.37) exists

which satisfies ai = C + Clail for at least two existing

facilities (i and k where i # k).

The following proof is a generalization of the method

used by Morris and Norback (1980) for the p = 2 case.

Proof. Since a solution of the form xi2 = C0 + C1Xil

exists, the axes can be translated without a loss of

generality so that CO = 0. Then C11(C I) can be written

as follows:

n
Z W Ia.2 - ClailI

cL'(C1 ) il
[l + 1(cl 1/2] l l (4.38)p 11 I(C 1/ 1p/(-1) (p-l)/p"
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The existing facilities i can be renumbered so that the

following region is specified:

R r = {Cl: ai2 - C1 ail > 0, i = 1, ... , r;

ai 2 - CI a < 0, i = r + 1, ... , n}. (4.39)

The union of regions Rr , r = 0, ... , n covers the real

number line. When r = (r = n) no values of i exist

such that ai 2 - C1 a il 0 (ai2 - Clail < 0). For C I e Rr

the absolute value sign can be removed from Ck Ip(C and

the following equation can be written:

C1 (C - [1 +
- 2 - 1 ) / p

p

r
{ EWi ( a i 2 -Cla il)

n
- Z Wi(ai2 - Cla i)},

i=r+l

= [i+ [(C2}1/2]P/(P-)]-(P-I)/P(A-C B)

(4.40)

where

r n
A E W a. Ei1 i i2 Wlai2'-

1 i=r+l

r n
B ZWa - W-a-

i-i 3.i=r+ 1
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The term (A - C1 B) in Equation (4.40) must be greater than

zero unless the existing facilities are collinear, in

which case the proof is trivial.

All that remains to be shown is that CZI1(C) cannot

be minimized on the interior of Rr The first derivative

of Cyp(C1 ) is as follows:

dC2p (C1 )D = [1 + [(Cl2)1/21-[(2p-l)/p]]

dC1

,(CI[(C2)I/2 (2-p)/(p-l) A+ B). (4.41)

Setting Equation (4.41) equal to zero results in the

following equations:

[(C 2 ) 1 / 2] (2-p)/(p-l)Cl = -(B/A] (4.42a)11

or

C1 = ±[(B/A) 2 I (-l 2 . (4.42b)

Taking the second derivative of Equation (4.41) produces

the following derivative:

2= c ) / 2 ] p/(p-l)1-2

2 (p-1)
dC 1

[1 + [(C2)1/21p/(p-l)]
- [ ( 3 p - l ) / p ]

1/
[2(p-*l) Ip/(p-1)A + (2p-l)

* CIB - A]. (4.43)
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The sign of d2CZ1 (C )/dC
2 is determined by the expression

[2 (pI)[(CI)I/2]P/(P-)A+ (2p-1)CIB-A ] . When the

values of C1 from Equation (4.42b) are substituted 
into

the preceding expression, d
2C1(C1)/dC 2 has the same

sign as

2(p- l)[(B/A) 2 ] 2A ± (2P- ) E(B/A)2 (PI )/ 2B-A

2 (p-2)/2 2 2
= _{[.(B/A) 2 B + A(A- }"(4.44)

A

Thus, d2cZp(C 1)/dC2 has the same sign as -A. A-C1B > 0

is violated, however, when C1 takes on the sign from

Equation (4.42a) unless A > 0. Therefore, any extremum

on the interior of Rr must be maximum when p # 1. Since

C£1 (C) is bounded below on R , C£
1 (Ci) is minimized on

p r p1

the boundary of Rr where at least one term of the form

W a 2 -Cai = t cdto 0.

Substituting C1 in Cp (Co
, CI the condition func-

tion can be written as

1j-1
1(CI) -- W iW{a i2 - CoIi--1

n

+ r Wilai 2 - C01 (4.45)

j~i~l

"+1

l'I_. n
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where
W =Wi

= [1 + [Cl)112]p1(p-1)](p-l)/p'

ai2 =a i2 - C1aill and

the jth term of C 1(C , CI) which equals

zero is omitted.
ck 1(CoIC is convex from Property 3.4 and piecewise

i 0cw)

linear with points of discontinuity in the first deriva-

tive occurring at ai2, i = 1, ..., n; i # j. A mini-

mizing value of C exists for which at least one term of

the form Wkjak2 - Co =0 and j # k. This condition

means that at least the jth and kth terms of CZ 1p(C , C

equal zero, and the property is proven for all p except

p=1.

The results of the previous property extend the

simplistic technique developed by Morris and Norback

(1980) for p = 1 and q = 1 to the general case of any

value of p. To solve any q = 1 generalized, bivariate,

linear location problem, determine the line that passes

through two existing facilities and minimizes CZ (C0 , CI).

The p = Family

The p = family of the generalized, bivariate,

linear location problem is the special case where the

error is divided equally between the two variables

• 44
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x and x2. When p = = (i.e., as with all cases when

p # 1), the concept of independent and dependent variables

no longer holds. Each variable in the p = model must

be responsible for an equal share of the error introduced

by the linear model. When p = the generalized, bivari-

ate, linear location model becomes

i lWilai2 - Co - Clail (4

(4.46)
[1 + 1CIj]

q

The distance being considered in this family is the

45-degree distance from the given facility to the linear

facility to be located. This result is derived from

Property 2.7 where the statement is made that the slope

of the line between the given facility i and the linear

facility to be located that minimizes the p-norm distance
is given by I/[C2)1/211/(p- 1) . When p= the slope is

equal to 1. The Weber formulation of the p = o family

with the hyperbolic smoothing constant is as follows:

Z W.[ (ai2 - C0 - Clail)2 +

CLq = i=1 (4.47)[1 + (C 2)I1/2]q  4.7

1

The special case of p = and q =2 is interest-

ing because of its close relationship to regression. If

.. 4
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If Equation (4.35) is rearranged, the following equation

is obtained:

n , * *

Z Wi(ai2 - C1ail ai2[i=l l ]2}1/ 2 =_ 1_14.48)

n , , 1(C2) 1 2 /p-1  (4.
Z Wi(ai - Ca]a 1
i= iU l i

If p approaches 1 from the negative direction as in the

linear regression of x2 on xI , the limit of the term on

the right side of the equality approaches infinity. The

necessary and sufficient condition for the equality to

hold is for the denominator of the term on the left side

of the equality to approach zero. The denominator of the

term on the left side of the equality set equal to zero is

the normal equation for linear regression with mean-

corrected data, and the term to the right of the equality

is the slope of the line connecting the existing facility

i to the point on the linear facility that minimizes the

p distance.

A similar relationship holds when p approaches 1 from

the positive direction. The limit o, the term to the

right of the equality is zero as the limit is taken as

p approaches 1 from the positive direction. The left side

of the equality can be equal to zero only when
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n , . , 0
Z W.[ai2- C1ail]ai2 0.i=l

As shown by Property 3.6, the preceding expression is the

normal mean-corrected equation for the linear regression

of X on x2.

If the limit of the right side of the equality in

Equation (4.35) is taken as p approaches infinity, the

following relationship results:

n , * * 2
Z Wi(ai 2 - C1ail]ai2j

i=l

n * , * * 2
W[a - C1a il]a i (4.49)

i=l

The preceding equation results directly from the fact

that the limit of I/[(C1 )/ 2 ]1 /(p- ) is 1 as p approaches

infinity. Equation (4.49) can be solved directly by

expanding terms and using the quadratic formula. Thus,

Equation (4.49) can be considered the normal equation for

p= ,q =2.

Note that values of p approaching 1 from the positive

or negative direction and of p approaching infinity are

the only cases of the generalized, bivariate, linear

location problem where 1/[(C 2 )1 /2 ]1 / (p - ) is a constant.
1

For all other values of p, the line connecting the

existing facility i to the point on the linear facility
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that minimizes the p distance is a function of the linear

relationship (C1).

The 0 < q < 1 Family

The 0 < q < 1 family of the generalized, bivariate,

linear location problem deals with the general case where

the existing facilities closest to the linear facility to

be located have the greatest influence in the decision

process. The problem of determining the location of the

linear facility poses several difficulties in determining

optimal solutions because of the nonconvexity, the non-

concavity, and the nondifferentiability of the objective

function. Certain simplifications are available, however,

that ease the computation difficulty.

As stated in Property 3.4, L i(Co, C1 ) is strictly

concave with respect to C0 for 0 < q < 1 since the hyper-

bolic smoothing constant m is greater than zero.

Ck q(Co C , , however, contains discontinuities in the

first derivatives. These discontinuities allow for the

proof which follows.

Property 4.4

Given the following formulation of cq( , C
p o

E Wiai2 - CO - lailI q

C~qCi=lCai
Cp(' C1 ) =

2 l(4.50)p 0 [1 + [HC12)/2]p/(p-1)]q (p -1)p '

I.

I ' :'" -.... ./ r
, ,.. 

... .. .-
1, 

. .. - z t- '
'
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an optimal minimizing solution exists for C0 and C1 called

C0 and C1 which satisfies ai2 = C0 + Clail for at least

one existing facility i when 0 < q < 1.

Proof. For a proof by contradiction, first assume a

solution exists for CO, C1 called C0 and C1 which mini-

mizes Equation (4.50) and which does not satisfy
* *

ai2 = CO + Clail for any existing facility i. Then the

existing facilities can be partitioned into two subsets

depending upon whether ai2 - C0 - Clail is greater than

or less than zero. C (Co , C1) can then be rewritten

within the absolute value signs as follows:

k , ,Z.(a. - -Oi ( i - C o lail
Ck(* c*) = i=lC 0( 1 ,1C+) = *2 1/2p1/(p-l)lq(p-l)/p[I (+ [(c 1 ) ] ]

n ,
Z Wi(C0 + Cla - ai2

+ [( 2 )l/ 2 ]p/(p-1)]q(p - l)/p

(4.51)

where

0 < q < 1.

Given the value of the slope C1 that minimizes Equation

(4.50), the conditional first and second derivatives for

Ci (C1C1) are as follows:
P o.
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_ 0 1*-2 1/23p/(p-1})-q(p-l)/p
.* -q[1 + ((C 1

d { i W(a. - CO - Ca.

i=l i2

n * *q-
- E Wi(Co + Caa - ai2

i=k+l 1lail ) ' (4.52)

d 2Ciq(C* C)P* 0 1 _ (1 *2 1/2]p/(p-l) .- q(p-l)/p, =q(q-l) [i1+ ((C ) ] ]
dC 1k * * q-

E W i (ai2  CO - Cl a i2
i=l ,i2

n q-2
+ E Wi(C o +Ca - (453)i=k+lCai

The second derivative Equation (4.53) is strictly less

than zero when q < 1. Thus, C0 corresponds to a relative

maximum rather than to a relative minimum. This condition

requires that the minimizing linear facility pass through

at least one existing facility, and the proof is complete.

The alternate proof mentioned earlier for the

Barrodale and Roberts (1970) theorem that the linear

facility minimizes the vertical distance where 0 < q < 1

passes through at least two existing facilities is

presented here.

'I
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Property 4.5

Given the following formulation of Ci._(C o, C1):

n

C_ (C_0, C1 = Wilai 2 - c o - C1 ailq (4.54)
i=l

where

0 < q < 1

an optimal solution exists for C0 and C1 called C0 and C1

that minimizes Ctq_(C 0, C ) and satisfies a 2 = C* + C*ai 2

for at least two existing facilities ( i = j and i = k and

j # k) when 0 < q < 1.

Proof. From the results of Properties 4.3 and 4.4

the statement can be made that the linear facility that

minimizes C.-(C0 , C1 ) will pass through at least one

existing facility. Showing that the minimizing linear

facility must pass through a second existing facility

completes the proof. Using a method similar to the one

used for Property 4.4, translate the coordinates so that

the one existing facility (ail, ak 2 that is on the mini-

mizing linear facility is at the origin. Cjq (C0 , C1)

can now be rewritten as:

k-l n
Ct_(C1 ) = Z Wi(ai2 - Clail)+ a W(Ca - a

i21i i 1 il 12

+ Wi(ak 2 - C(al) q  (4.55)
k2 C1 k
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where

i = 1, .. ,k-i are the existing facilities that

satisfy ai2 -C1ail > 0,

i = k + 1, ..., n are the existing facilities

that satisfy C1ail - ai2 > 
0 , and

Wk(ak2 - Clakl ) q = 0.

If the assumption is made that the value of C1 called C1

for the linear facility that minimizes Equation (4.55)

does not pass through a second existing facility, then

c~q_(C is both continuous and differentiable. Straight-

forward differentiation of Equation (4.55) results in the

following equation:

dC9Zql-(C 1) k-i -
dC =-q[ Z W. (ai 2 - Ilail)1  i=l

Z wi(Clail - ai2 )  (4.56)
i=k+l

d2 q -(C1 ) k-i

2 q(q - M Z Wi(ai2 - Ca il)q-2
dC 1  i=1 1  i i

n
+ Z W (C-a.1 - a 2 )q - 2 ]. (457)

i=k+l

Since the second derivative is strictly negative for

0 < q < 1, it follows that any C1 must be a relative

--. I I I3 I *IIL I --
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maximum rather than a relative minimum as assumed. This

contradiction requires that the relative minimum pass

through a second existing facility, and the property is

proven. (The proofs of Properties 4.4 and 4.5 are based

on a method from Morris & Norback (1980) suggested by

an anonymous referee.)

Property 4.5 can be easily extended to the limit as

p approaches 1 from the positive direction by simply

reversing the variables of the original problem. Thus,

the horizontal distance of the original problem becomes

the vertical distance of the modified problem. This

process is similar to rotating the axis of the original

problem by 90 degrees. Property 4.5 was extended to the

p = 2 case by Morris and Norback (1980) when they rotated

the original axis such that the optimal linear facility

was horizontal. In the p = 2 case the vertical distance

is the distance to be minimized since the Pythagorean

theorem holds. For p # 2 or p # 1 the rotation method is

not a valid solution technique because of the triangular

inequality (Morris, 1981). However, the following

property generalized from Morris and Norback (1980) eases

the computational problems in determining an optimal solu-

tion for p A 2 or p # 1.

i|I
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Property 4.6

Given the following formulztion of cq(Co, Ci):

Z W0

Cj q ( C  i=l a 2 - -
p 0 [1+ ICI1 p/(p-l) Iq(p-l)/p

the following relationship holds:

IC I Cll < ICIh

where
* .*.

C IC I are the intercept and the absoluteov v

value of the optimal slope of the linear

facility when p approaches I from the

negative direction,

cop, Ic1ip are the intercept and the absolute

value of the optimal slope of the linear

facility for any p, and

Coh, ICh are the intercept and the absolute

value of the optimal slope of the linear

facility when p approaches 1 from the

positive direction.

Proof. From Equations (3.15), (3.16), and (4.58)

the following equations can be stated: iJ
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CLtq(C C) = 1 + C(/P11qpl/

*k ( C, C 1 (459

Ctq (C0  C) = C11[1 + I1 1 P/(P-l) f-(p-l)/p

*Ctk. (C0  C1) (4.60)

NowC2 (C C sinc (C 
1- Ov' v - 1- op1 Cp sinc lvC

minimizes C2.q (C, C1) So t+Cl/p1]qpl

From Equation (4.45) and the previous expression,

C9' )C < CZ ((C ,C 1~)=[ + j~~(l](l/
Sop ip- p ov l

" Ct.. (C * 'Ci) This means El + C~*ip/(p-1)]-q(p-l)/p

"CqC* li/p1]q~-)pt *v *

so that jC*Ip/'p-1 ) < IC 1P"(P
1 ). Similarly,

ICl11hE1 1 h 1 ionh Cl

C~ip(p-l,-q~-l)/Cip
IICh]1 (1 +11 1(C ) n

I(1 + OP C1 ) .1 ICi*Ih

*~ h1 1 Clh~~ ~oh' Clh) Therefore,

Iclipri + IC CI

El~ + jCjp/(p-l)-q(p-l)/p which resolves

lc*I/(P1) IC*IP/'P-1 and completes the proof.
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A general Heuristic solution for the 0 < q < 1

family is to individually select each existing facility

as the optimal C0 (i.e., from Property 4.4) and to vary

C1 between C and Clh for the slope that minimizes

Equation (4.58). The optimal solution will be the exist-

ing facility that results in the minimum value for Equa-

tion (4.58).

The 2 > 1 Family

When q > 1 and the distance to be minimized is

neither the vertical nor the horizontal distance, both

Ctq(CO , C1 ) and CL q(C, CI ) remain nonconvex and noncon-p 0p o0

cave. The only solution technique available under such

circumstances is a two-dimensional Heuristic search.

The search, however, is simplified as a result of Property

4.6 since the range for C must be between C and C
lp lv nClh*

The suggested procedure is to step through values of C1

and to determine at each step the optimal value of C0

given the present value of C1. C0 can be determined by

any gradient search technique since ctq(co , C is strictlyp a
convex. The optimal values for C0 and C1 can then be

determined by finding the minimum value of cjq(co ,p C1 )

Sample Problem

To compare the results of various combinations of p

and q values for the generalized, bivariate, linear

5
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location problem, a sample problem selected from Neter

and Wasserman (1974, p. 94) is presented. The optimal

values of C0 and C1 determined from 7 values of q ranging

from .1 to infinity and from 6 values of p ranging from

the vertical distance to the horizontal distance are cal-

culated. The data points used are as follows:

i: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

ail: 7 4 5 1 5 4 7 2 4 2 8 5 2 5 7 1 4 5

ai2: 97 57 78 10 75 62 101 27 53 33 118 65 25 71 105 17 49 68

W.: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

The fact that the weights for each existing facility are

equal to one does not restrict or limit the example. The

results of the calculations are presented in Table 4.1.
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CHAPTER V

IMPLICATIONS AND RECOMMENDATIONS

FOR FURTHER RESEARCH

The derivation of the generalized, bivariate, linear

location problem consists of two subproblems. The first
subproblem involves the determination of the point on a

linear facility that minimizes the p-norm distance to an

individual existing facility. The second subproblem con-

sists of determining the optimal linear facility that

minimizes the sum of the q multiple of the p-norm distance

from all the existing facilities to the point on the linear

facility determined by the previous step. The simultane-

ous solution of the two subproblems results in the fol-

lowing formulation:

n IZ W lai 2 - C O - Claill
C ICo Cl1  i=l

p o [1 + IC1 1 P/(p-l) q ( p - l )/p*

The lack of convexity of the resulting formulation

for the general case prohibits a universal solution tech-

nique of the generalized, bivariate, linear location

problem for all combinations of possible values for
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p and q. For certain combinations of p's and q's an exact

solution of generalized, bivariate, linear location prob-

lem can be determined. For the remaining combinations

the only means of determining a solution is through a

heuristic approximation procedure. In Table 5.1 the solu-

tion techniques available for each combination of p's

and q's are outlined.

Implications

The generalized, bivariate, linear location problem

expands the use of linear location theory to include the

concept of a p-norm metric system of measurement. In

previous linear location problems only the vertical

distance (the limit as p approaches 1 from the positive

direction) and the Euclidean distance (p = 2) were con-

sidered. The generalized, bivariate, linear location

problem allows the analyst to place the linear facility

while considering the importance of each coordinate axis.

If the coordinates are measured in different units pro-

hibiting conversion, for example, minimizing the Euclidean

distance may not be consistent with reality since the

p = 2 distance assumes an inverse importance of the axis

depending upon the slope of the located facility. By

proper selection of the p-norm distance to be minimized,

.1!
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Table 5.1

Solution Techniques for the Generalized,

Bivariate, Linear Locat on Problem

Values of p
Values
of q p1* 1<p<2 p=2 2<p< p=

0 < q < 1 D, F, G F, G D, F, G F, G F, G

q = 1 A, D, G D, G D, G D, G D, G

l<q<2 C,G G G G G

q = 2 A, B, C, E, G E, G B, E, G E, G B, E, G

q>2 C,G G G G G

2<q< C,G G G G G

q A, C, G G G G G

Where

A = Linear Programming Formulation
B = Classical Optimization
C = Gradient Search, Convex Programming, and

Kuhn-Tucker Conditions
D = Two Point Solution
E = Birge-Vieta Iterative Method
F = One Point Approximation Solution
G = General Heuristic Technique (Approximation)

*The limit as p approaches 1 from either the positive
or from the negative direction.
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the analyst may select the weighting of the coordinate

system that best defines the importance between the two

axes.

The generalized, bivariate, linear location problem

can be extended, just as in Euclidean linear location

theory and regression, to cases other than the minimiza-

tion of the absolute or the square of the distance being

considered. The value of q, which is the multiple of the

absolute distance between the existing facility and the

linear facility to be located, can be varied between

greater but not equal to zero and infinity. For the most

part, the solution techniques available for linear regres-

sion extend to the generalized, bivariate, linear loca-

tion problem when q is less than or equal to one. In

general, however, for q greater than one the generalized,

bivariate, linear location problem must depend upon a

heuristic search procedure that does not guarantee an

optimal solution.

Recommendations for Further Research

Three areas should be considered for future research

concerning the generalized, bivariate, linear location

problem.

1. The first area concerns the problem of deter-

mining the optimal combination of p and q values that
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should be used in any one 
problem. This problem may be

of a subjective nature in most situations. If the models

presented in this research are used in a forecasting

situation, however, the problem becomes quite objective

since the desire is to obtain the best fit.

2. A second and obvious extension of the bivariate

problem is the multivariate case. A more obscure exten-

sion is the multivariate problem where the p values for

each variable are not equal. The problem can be formu-

lated as follows:

Cp(C
C l ' P 2' " ' ' P r + l 

(C ' C 1 
'  " ' ' ' C r )

n
WiJa1i,r+l - C - C 1a il C rair q

[I + 1C1 jPl/(P-l-) + ... , + CrlPr/(Pr-l)q (Pr+l-l)/Pr"

3. The third area concerns the statistical applica-

tions of the generalized, bivariate, linear location

problem. Extensive work must be done to provide sampling

distributions for the various parameters of the model.

IJ
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